

CTEPHI surgical treatment

Ph. Dartevelle, E. Fadel, <u>S. Mussot</u>, D. Fabre, O. Mercier and G. Simonneau

MARIE-LANNELONGUE HOSPITAL BICETRE HOSPITAL PARIS-SUD UNIVERSITY

1	Pulmonary arterial hypertension (PAH)		3 Pulmonary hypertension due to lung diseases and/or
	1.1	Idiopathic	hypoxia
	1.2	Heritable	3.1 Chronic obstructive pulmonary disease
		1.2.1 BMPR2	3.2 Interstitial lung disease
		1.2.2 ALK1, endoglin (with or without hereditary haemorrhagic telangiectasia)	3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
		1.2.3 Unknown	3.4 Sleep-disordered breathing
	1.3	Drugs and toxins induced	3.5 Alveolar hypoventilation disorders
	1.4	Associated with (APAH)	3.6 Chronic exposure to high altitude
		1.4.1 Connective tissue diseases	3.7 Developmental abnormalities
		1.4.2 HIV infection	
		1.4.3 Portal hypertension	4 Chronic thromboembolic pulmonary hypertension
		1.4.4 Congenital heart disease	5 PH with unclear and/or multifactorial mechanisms
		1.4.5 Schistosomiasis	 Haematological disorders: myeloproliferative disorders,
		1.4.6 Chronic haemolytic anaemia	splenectomy.
	1.5	Persistent pulmonary hypertension of the newborn	5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans
1'	Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis		histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, vasculitis
2	Pulmonary hypertension due to left heart disease		5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
	2.1 2.2 2.3	Systolic dysfunction Diastolic dysfunction Valvular disease	5.4 Others: tumoural obstruction, fibrosing mediastinitis, chronic renal failure on dialysis

Clinical Classification of PH

G Simonneau et al JACC 2009

Incidence

- The true incidence of CTEPH is difficult to evaluate
 - Very few studies have analyzed the long-term outcome of patients presenting with acute PE
 - Large proportion of patients (70%-80%) have had PE that remains undiagnosed before death or until PH develops
- 0.5% to 5% of patients can develop CTEPH after the first episode of acute PE
- **CTEPH can occur in 1/3 of patients with recurrent PE**
- Rough estimates of >5,000 cases/ year in the US

Definition of CTEPH

 CTEPH is symptomatic PH (mPAP ≥ 25 mmHg) with persistent perfusion defects despite 3-6 months of adequate anticoagulation

- CTEPH is a disease with:
 - a mechanical component judged amenable to surgery
 - and variable small vessel disease

Pathophysiology

- Natural course of acute PE is complete resolution of the acute embolus
- CTEPH is a sequelea of Acute Pulmonary Embolism (PE)
- Fibrous organization of the clots

HOWEVER

40 to 70% of all CTEPH had previous PE (Humbert 2006-European CTEPH Registry)

Consequences -1

- Obstruction of lobar, segmental, or subsegmental PA branches by unresolved thrombo-emboli
- Modifications of the non obstructed PA territories
- Systemic pulmonary circulation develops from:
 - Bronchial arteries
 - Pleural adhesions
 - Internal mammary arteries

Mechanisms of pulmonary hypertension

PH is due to:

- Obstruction of PA bed by thrombo-embolic material
- Development of vasculopathy in the distal unobstructed PA territories because of overflow redistribution

Consequences -2

- Progressive aggravation of pulmonary hypertension is rarely due to recurrent PE
 - Typically PH progresses despite anticoagulation
- Aggravation of pulmonary hypertension is mainly due to the development of a distal vasculopathy in the unobstructed PA territory
- Changes in the unobstructed PA bed can lead to an inoperable situation or can dramatically increase the risk of surgery
- Pulmonary endarterectomy is better earlier than later in the course of the disease

Mechanisms of dyspnea

Pulmonary hypertension

Ventilation perfusion mismatch

Preoperative work-up

Nuclear scan Ventilation and Perfusion
Angiography
CT scan with reconstruction
Right catheterization
Correlation between anatomic obstruction and hemodynamic severity

Pulmonary Angiogram

CTEPH 947 Dynes.s.cm-5

PAH 2100 Dynes.s.cm-5

JAMIESON CLASSIFICATION

Type I Disease (20 %) Type II Disease (70 %) Thickened intima Type III Disease (10 %) Distal disease

Thrombus + Fibrotic Tissue

Indwelling catheters Ventriculo-atrial shunts PM wires

PHT

Correlation between anatomic obstruction and PVR

The right time for PEA

- Early prior developing arteriolitis
- After a 3 month anticoagulant therapy time
- As first line when anatomical obstruction is correlated to hemodynamic severity
- Hemodynamic severity and distal disease ??

08/1993

NYHA FC 2 6'WD 440 m Mean PAP 48 mmHg CO 5.6 l/min TPR 686 dyn.sec.cm⁻⁵

02/1995

NYHA FC 4 6'WD 210 m Mean PAP 54 mmHg CO 3.4 l/min TPR 1271 dyn.sec.cm⁻⁵

Postembolic PHT

PA Angiosarcoma

« OBSTRUCTIVE » PHT

Fibrosing mediastinitis

Pulmonary arteritis

Teratoma - leiomyoma

Angiosarcoma of the pulmonary arteries Progressive dyspnea Tumor originating from the main PA PET scan +++

Multisliced CT-scan

hypoplasic right PA, hypoplasic right lung

Fibrosing mediastinitis

2002 : Double PTFE bypass

ENDARTERECTOMY

Proximal arteriotomy Identification of the correct plane Proximally Posterior aspect of the PA Respect the arteriotomy line Eversion endarterectomy

Pulmonary artery incisions

Operative Strategy

- Deep Hypothermia
- Aortic Clampage
- Right Endarterectomy circulatory arrest
- Reperfusion 15 min.
- Left Endarterectomy circulatory arrest
- Reperfusion- Aortic unclamping
- Rewarming & CPB weaning

Endovascular Procedure

Proximal initiation of endarterectomy
 Need of distal obstruction relief

Video assistance provides

Light
Distal visualization
View for assistant surgeons

Right side

Duration of the procedure

Postoperative complications

- Post-reperfusion pulmonary oedema (40 ECLS)
- Right heart failure secondary to persistently high pulmonary pressure
- Nosocomial pneumonia
- Haemoptysis: 12 bronchial artery embolisations
- Rethrombosis of an endarterectomised area occurs only rarely

Bronchial embolisation

Causes of death

Pulmonary endarterectomy

Mortality increases with preoperative resistance, p < 0,001(OR : 1,761 95% CI 1,45 – 2,13)

Pulmonary endarterectomy

Postoperative mortality

n = 1350

n/year

January 1995 to december 2012

Current mortality drop in hemodynamically severe patients

- Better patients selection
 - Proximal disease on imaging
 - Anatomical obstruction correlated with PVR
 - Eliminate patients with PAH + in-situ thrombosis +++
- Better postoperative management
 - Low cardiac output
 - Postoperative use of ECMO
 - Bronchial arteries embolization

CT Scan

MPH Image created by Carestream Cliant [H]

MPR Image created by Carestream Client

5

×.

Pulmonary artery segmentation

First session 2/17/2014

Ballon Angioplasty associated with OCT
LLL : branches A8 +A9 + A 10

Conclusion

- PEA is the ideal treatment for postembolic PHT
- Large experience required for:
 - Indication for surgery
 - Surgical procedure
 - Management of postoperative course
- Early operation avoids development of vasculopathy

Conclusion

- Operability is determined by experts in CTEPH
- Large indications for PEA (70%)
- Nuclear scan
- True history of PE
- Correlation between hemodynamics and imaging
- Mortality rate of PEA is less than 3%
- Bridge therapy is very debatable

ECMO for PRIMARY GRAFT FAILURE

- Double Lung Transplantation
 - for IPF (n=2), CTEPH (n=1), bronchiectasy (n=1), PH (n=1)
 - 4 postoperative death
 - I patient alive after a mean follow up of 2 months
- Heart-lung Transplantation

11

5

- for PAH (n=7), Eisenmenger (n=2), CTEPH (n=2)
- 4 postoperative deaths
- 7 patients alive after a mean follow up of 10 months

ECMO AS A BRIDGE TO HEART-LUNG Tx (n = 4)

- Urgent procedures
- ECMO needed after
 - TEP failure (n=2)
 - Endstage PH (n=2, procedure under local anesthesia)
- 3 patient alive

Marie LANNELONGUE & Antoine BECLERE PEA for International Patients

□ All inclusive

Work-up surgical and hospital fees

Average hospital stay

18 days

50 000 Euros

Low cost local accomodation for family members

Non included

URGENT PROCEDURES

- I Double Lung Transplantation
 - for PPH (n=9), CTEPH (n=1), IPF (n=2)
 - 4 postoperative death
 - 8 patients alive after a mean follow up of 6 months
- 1 Heart-lung Transplantation

16

12

- for PPH (n=8), CTEPH (n=1), IPF (n=1), pulmonary veins stenosis (n=1)
- 5 postoperative death
- 11 patients alive after a mean follow up of 10 months

Factors predicting efficiency

- History of acute PE or DVT
- Honey moon period (period between acute PE and the development of severe PH)
- Proximal disease on angiography
- Developed systemic circulation
- Anatomical obstruction correlating with PVR +++