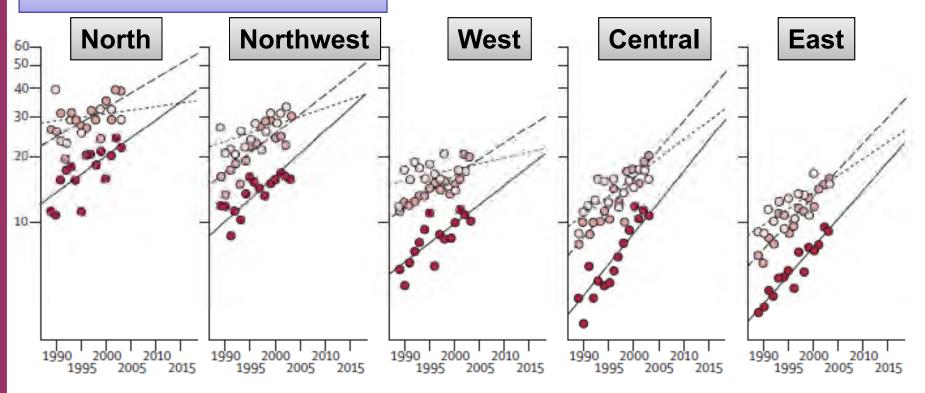


Prevention of type 1 diabetes

Jean-Claude Carel, Hôpital Robert Debré, Paris, France

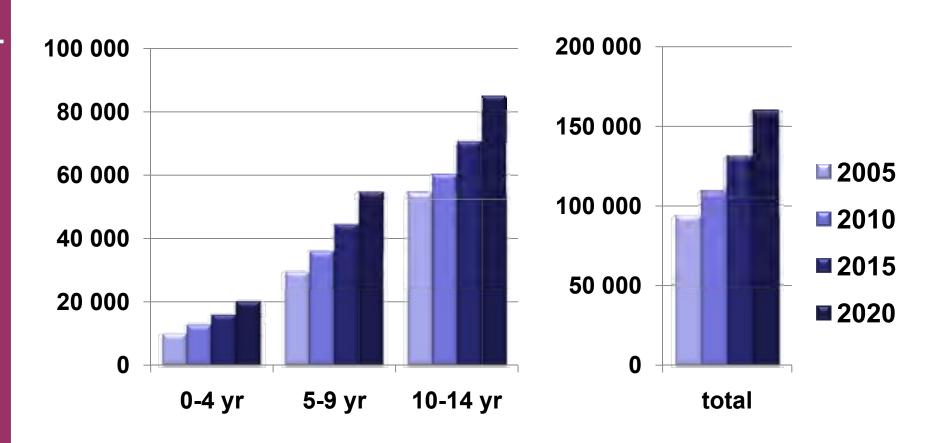
Prevalence of microalbuminuria – UK population based study

Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study


Christopher C Patterson, Gisela G Dahlquist, Eva Gyürüs, Anders Green, Gyula Soltész, and the EURODIAB Study Group

www.thelancet.com Vol 373 June 13, 2009

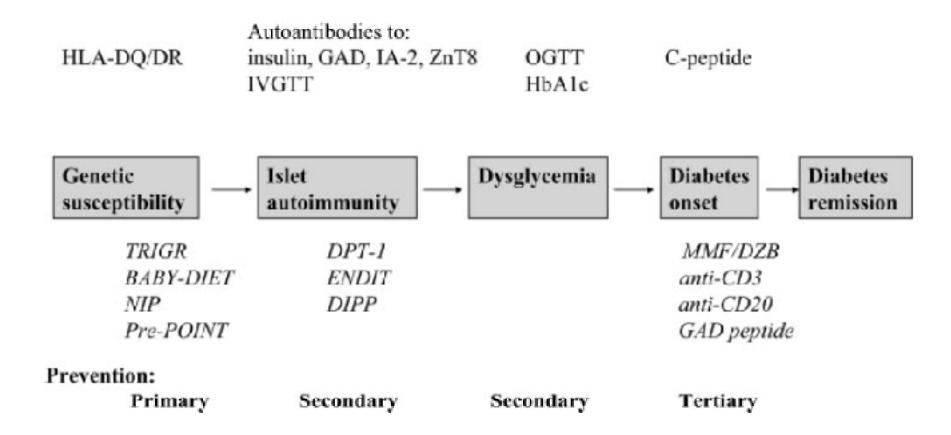
THE LANCET


Incidence rate/10⁵ girls

Annual increase:

- ranges from 2.2 to 6.8%
- higher in younger age group
- higher in low incidence areas
- higher in girls 5 to 9

Number of prevalent cases in the EU: 2020 trend

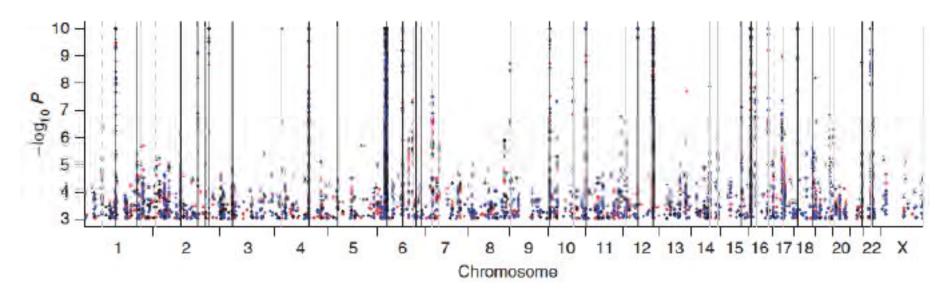

Prevention of diabetes

- What population?
- At what stage of the disease process?
- ▶ How?

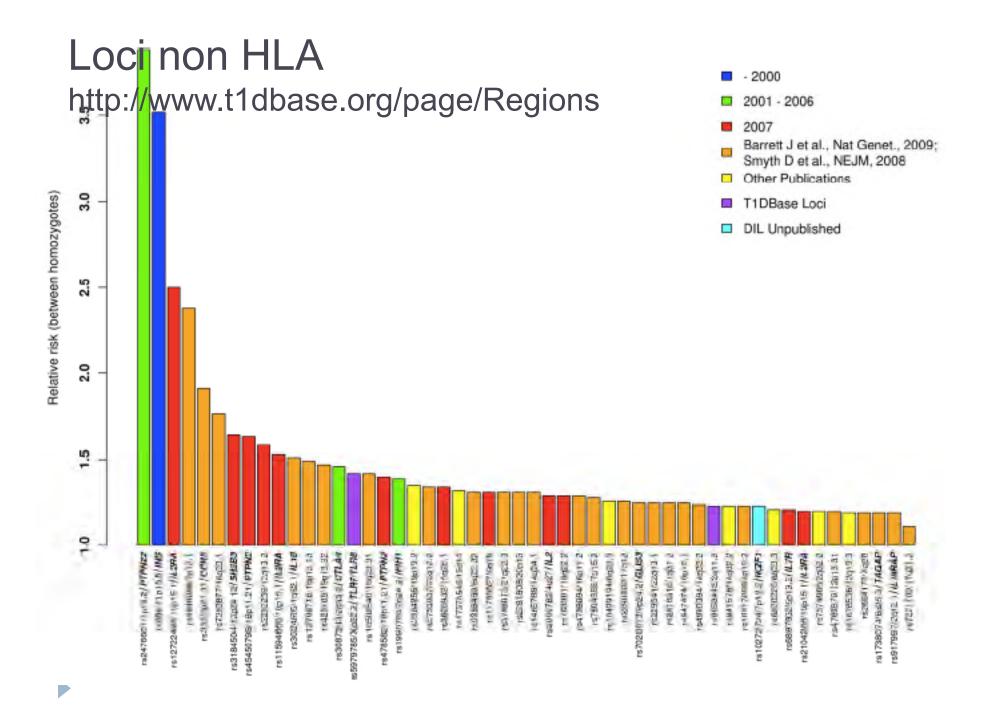
What population?

- Relatives of type 1 diabetic patients
 - motivation for type 1 diabetes screening / prevention
 - most of the experience so far
 - ≥ ≈10 to 15% of new onset cases
- General population defined by genetic risk
 - no motivation for diabetes screening
 - variable sensitivity / specificity resulting from selection criteria
- General population
 - final goal of diabetes prevention

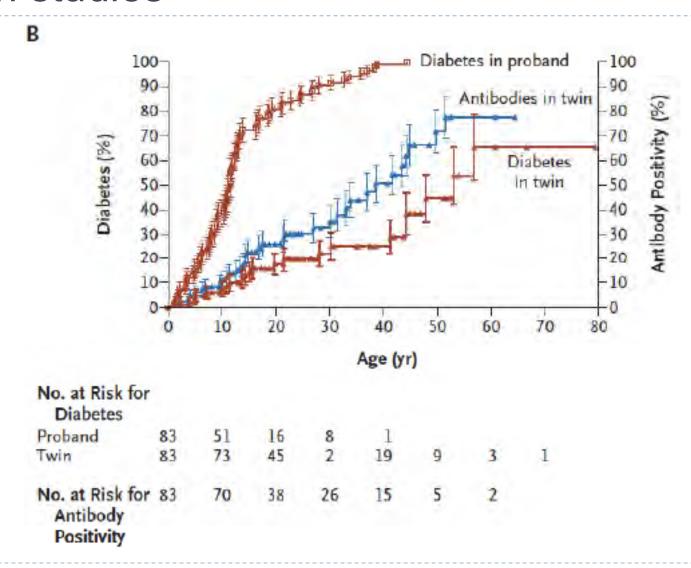
At what stage of the disease process?

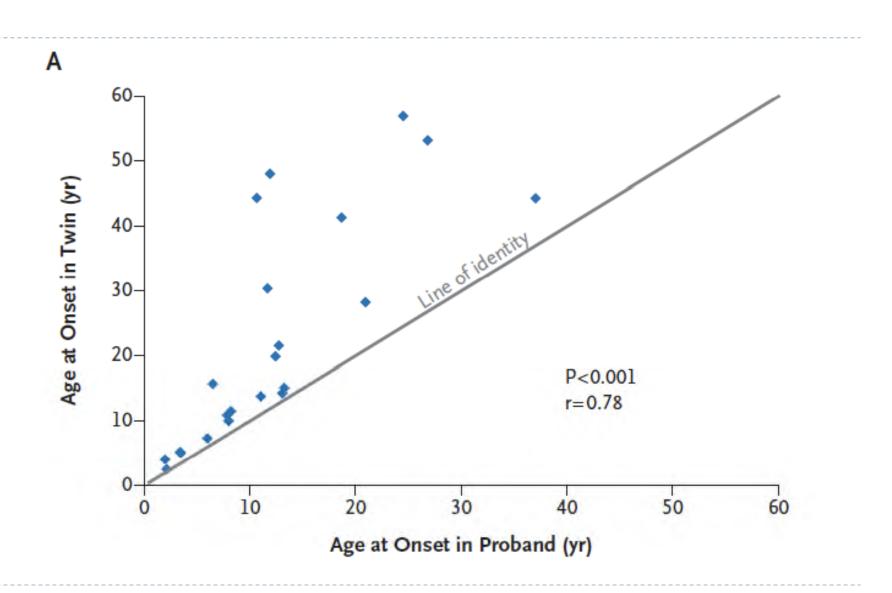


Type 1 diabetes: epidemiology


overall incidence	10-60/10 ⁵ /year
geographic differences	north / south gradient
sex ratio	~ 1:1 <15 years 3:2 male bias 15-40 yrs
sibling incidence	6%
λ_{s}	~ 15
children of diabetic mother	2-3%
children of diabetic father	6%
dizygotic twin concordance	0-13%
monozygotic twin concordance	25-70%

Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes


Jeffrey C Barrett¹, David G Clayton¹, Patrick Concumon^{2,3}, Beena Akolkar⁴, Jason D Cooper¹, Henry A Erlich⁸, Gécile Julier⁸, Grant Morahan⁷, Jørn Nerup⁸, Concepcion Nierras⁹, Vincent Plagnol¹, Flemming Pociot⁸, Helen Schuilenburg¹, Deborah J Smyth¹, Helen Stevens¹, John A Todd¹, Neil M Walker¹, Stephen S Rich^{3,10} & The Type I Diabetes Genetics Consortium¹¹


≈19 000 cases, 21 000 controls

Twin studies

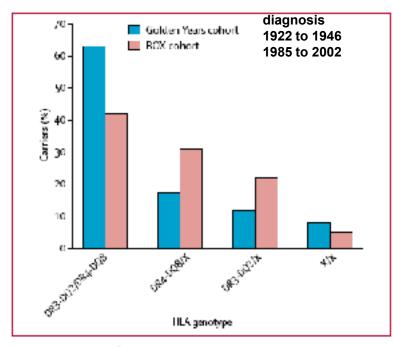
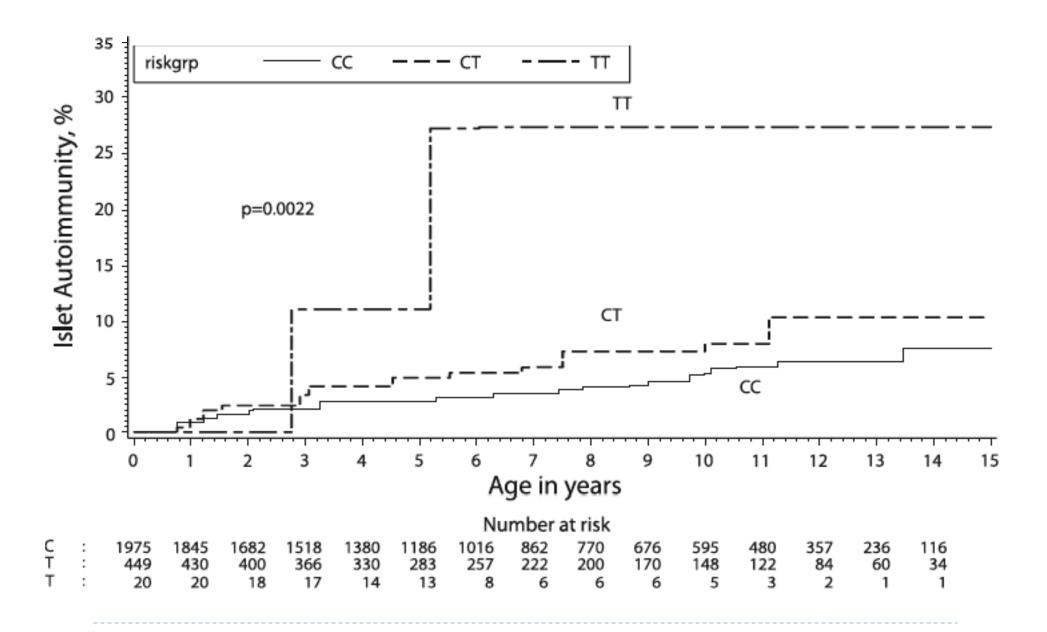
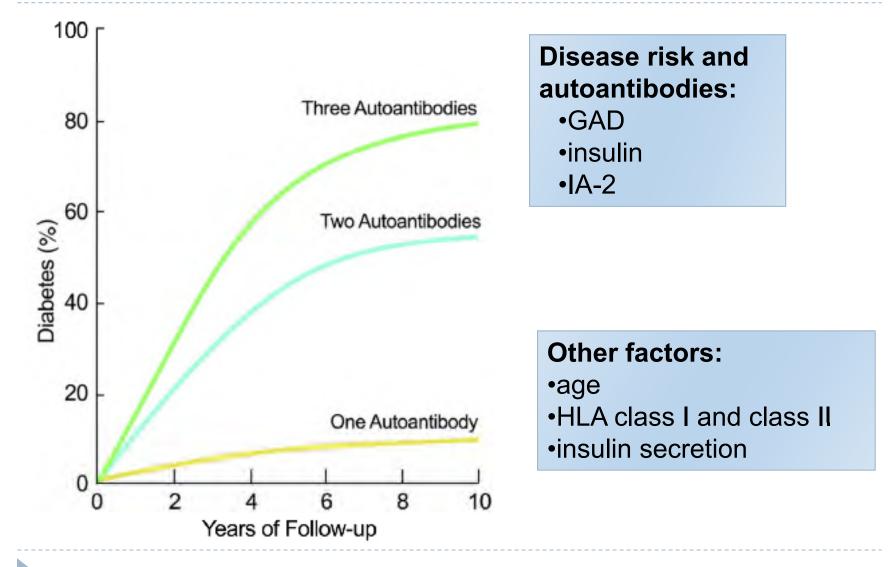
Twin studies

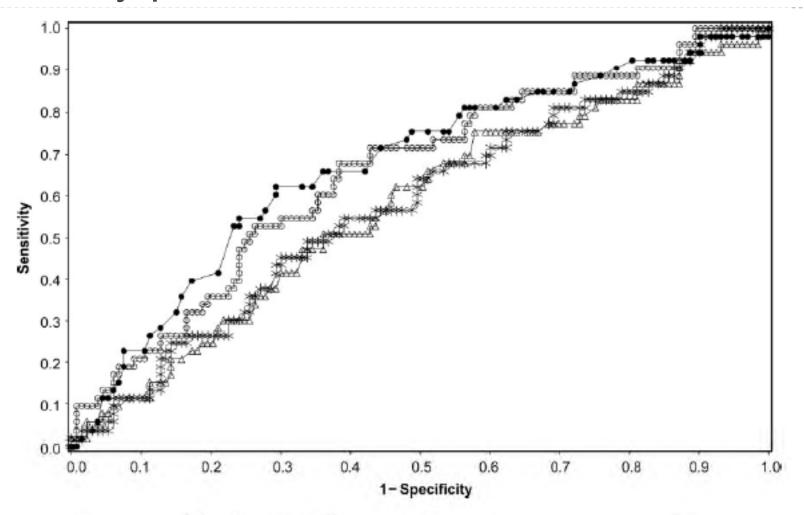
Sensitivity and specificity of HLA typing

HLA-DR,DQB1	Type 1 diabetic individuals (n = 1322) n (%)	Population frequency (n = 3339) n (%)	Odds ratio (95% CI)	$\begin{array}{l} \text{p-value} \\ \alpha = 0.0025 \end{array}$
3/4,*0302	400 (30.26)	78 (2.34)	18.14 (14.08–23.37)	< 0.0001
4/4,*0302	146 (11.04)	100 (2.99)	4.02 (3.09-5.23)	< 0.0001
1/4,*0302	96 (7.26)	75 (2.25)	3.41 (2.50-4.64)	< 0.0001
8/4,*0302	36 (2.72)	50 (1.50)	1.84 (1.19–2.84)	0.0051
9/4,*0302	13 (0.98)	11 (0.33)	3.01 (1.34–6.72)	0.0049
7/4*0302	39 (2.95)	82 (2.46)	1.21 (0.82-1.78)	0.34
Y/4,*0302†	116 (8.78)	242 (7.25)	1.29 (1.03-1.63)	0.0281
2,*0602/4,*0302	6 (0.45)	79 (2.37)	0.19 (0.08-0.43)	< 0.0001
2/4,*0302	9 (0.68)	33 (0.99)	0.69 (0.33-1.42)	0.3166
3/3	103 (7.79)	44 (1.32)	6.33 (4.42–9.06)	< 0.0001
3/1	45 (3.40)	73 (2.19)	1.58 (1.08–2.30)	0.0171
3/8	15 (1.13)	30 (0.90)	1.27 (0.68–2.36)	0.4573
3/9 3/7	11 (0.83)	6 (0.18)	4.66 (1.72–12.63)	0.0009
3/7	33 (2.50)	86 (2.58)	0.97 (0.65–1.45)	0.8769
3/Y†	45 (3.40)	182 (5.45)	0.61 (0.44–0.85)	0.0034
3/2,*0602	7 (0.53)	81 (2.43)	0.21 (0.099-0.46)	< 0.0001
3/2	22 (1.66)	27 (0.81)	2.08 (1.18–3.66)	0.0098
3/4,*0301	30 (2.27)	33 (0.99)	2.33 (1.41-3.83)	0.0006
4/X.4/4.*0301†	58 (4.39)	277 (8.30)	0.51 (0.38-0.68)	< 0.0001
All others (X/X)#	92 (6.96)	1750 (52.41)	0.068 (0.054-0.085)	< 0.0001

HLA genotypes in children with diabetes - trend with time

	AII	
	n (%)	OR (95% CI)*
DRB1*03-DQB1*02/DRB1*04-DQB1*03		
1978-1988	39 (39)	
2002-2004	75 (28)	0.6 (0.4-0.99)
DRB1*04-DQB1*03/DRB1*04-DQB1*03, DRB1*04-DQB1*03/X†, DRB1*04-DQB1* 03/unknown		
1978-1988	30 (30)	
2002-2004	111 (42)	1.7 (1.1-2.8)
DRB1*03-DQE1*02/DRB1*03-DQE1*02, DRB1*03-DQB1*02/X1, DRB1*03-DQB1* 02/unknown		
1978-1988	20 (20)	
2002-2004	55 (21)	1,1 (0.6-1.9)
X/X, X/unknown		
1978-1988	11(11)	
2002-2004	23 (8.7)	0.8 (0.4-1.6)


Figure: Distribution of HLA class II haplotypes in Golden Years and BOX cohorts

Disease prediction in relatives

Predictive value of metabolic indexes in antibody-positive relatives

—ROC AUC for various metabolic indexes. ●, 2-h glucose—OGTT; ○, FPIR; △, FPIR-to—HOMA-IR ratio; □, HOMA-IR.

Environmental factors – modifiable factors?

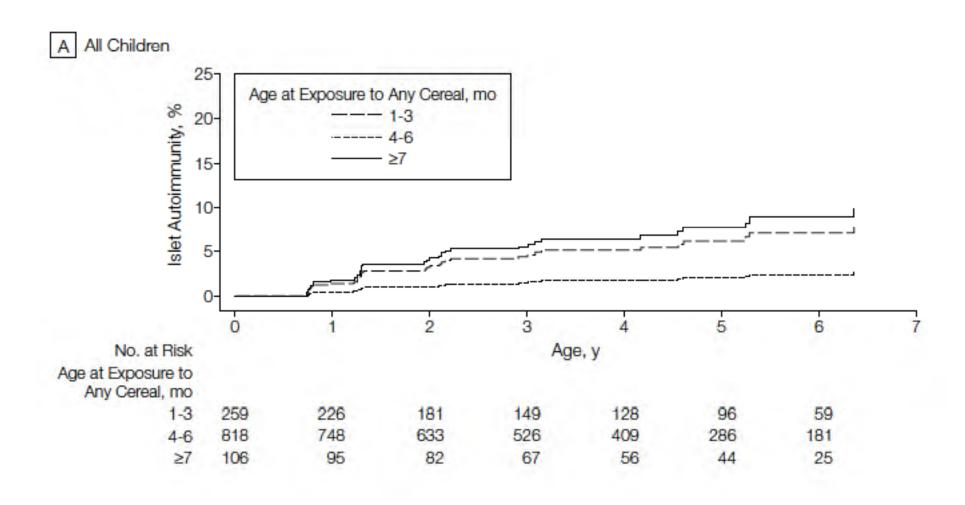
Viruses

congenital rubella, Coxsackie B, mumps, echovirus, cytomegalovirus,
 Epstein-Barr virus, retrovirus, rotavirus, parvovirus B19

Bacteria

gut microbiota

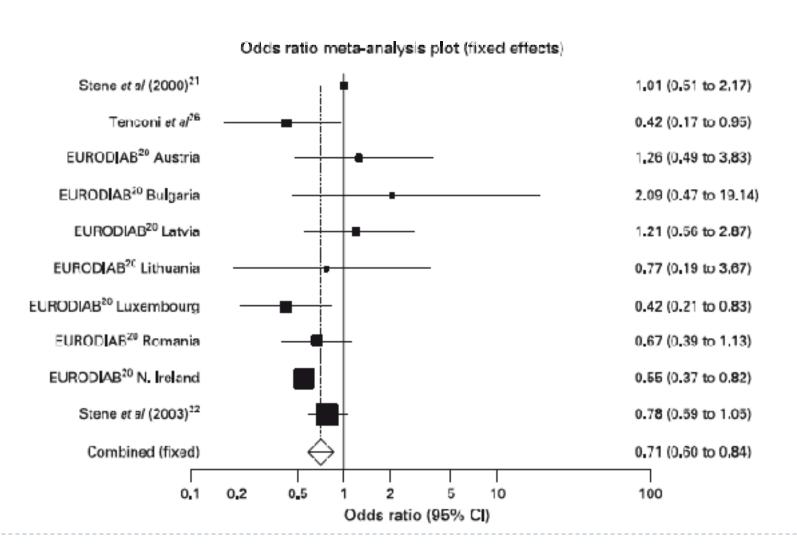
Dietary factors

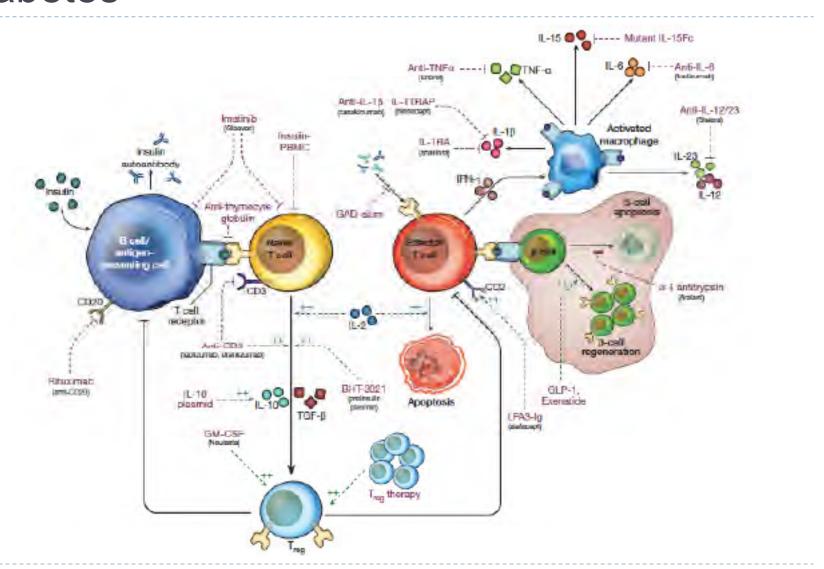

- mother or child
- cow milk, decreased vitamins C, D, and E, early introduction of cereals, potatoes/carrots, fruit/berries, cow's milk, N-nitroso compounds
- increased calories
- Psychosocial environment
- Non specific triggers
 - hygiene hypothesis
- . . .

Cereals in infancy and islet autoimmunity

Table 3. Age at Exposure to Cereals in Infancy and Risk of Islet Autoimmunity in Diabetes Autoimmunity Study in the Young Cohort*

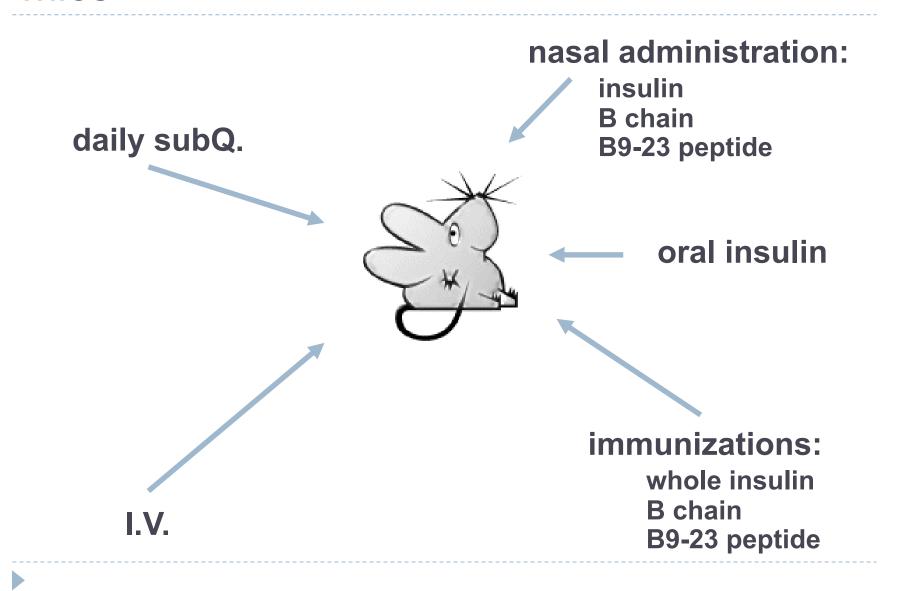
	ice and Gluten-Containing Exp n Any Cereal Variable	oosures
Age exposed to any cereals, mo	1-3	4.32 (2.00-9.35)
	4-6	1.00
	≥7	5.36 (2.08-13.77)
Breastfed when first exposed to cereal	Yes vs no	0.50 (0.25-0.99)
HLA genotype	HLA-DRB1*03/04,DQB8 vs other genotypes	8.69 (4.15-18.16)
First-degree relative with type 1 diabetes mellitus	Yes vs no	7.64 (3.55-16.46)
Race/ethnicity	Non-Hispanic white vs other	2.83 (0.83-9.70)
Maternal age	1-Year increase	1.05 (0.98-1.12)


Cereals in infancy and islet autoimmunity


Vitamin D intake in infancy and risk of diabetes

	Type 1 diabetes	Time at risk (years)	Incidence per 100 000 years at risk	RR (95% CI)	Adjusted RR (95% CI)*
Use of vitamin D supplements				-	
None	2	981	204	1 (reference)	1 (reference)
Irregularly	12	36 143	33	0-16 (0-04-0-72)	0.16 (0.04-0.74)
Regularly	67	276 235	24	0-12 (0-03-0-47)	0-12 (0-03-0-51)
Dose of vitamin D†					
Low	2	2 093	96	1 (reference)	1 (reference)
Recommended	63	259 779	24	0-20 (0-05-0-84)	0.22 (0.05-0.89)
High	2	13 245	15	0-14 (0-02-0-97)	0-14 (0-02-1-01)
Suspected rickets‡					
No	77	306 945	25	1 (reference)	1 (reference)
Yes	4	6 414	62	2.6 (1.0-7.2)	3-0 (1-0-9-0)

Vitamin D intake in infancy and risk of diabetes: meta-analysis



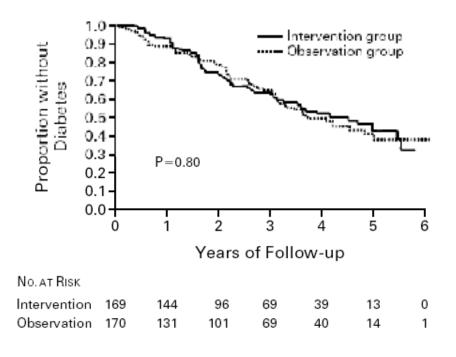
Targets of immune intervention in type 1 diabetes

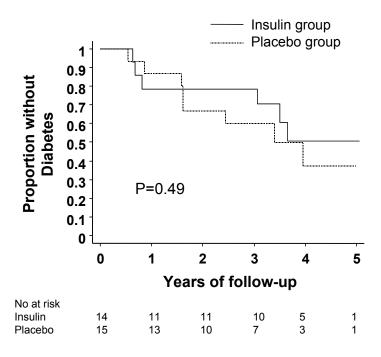
Recruiting	Oral Insulin for Prevention of Diabetes in Relatives at Risk for Type 1 Diabetes Mellitus Condition: Diabetes Mellitus, Type 1 Intervention: Drug: Oral Insulin	Study (ref.)	Drug/phase
Active, not recruiting	TRIGR - Primary Prevention Study for Type 1 Diabetes in Children at Risk Condition: Diabetes Mellifus, Type 1 Intervention: Dietary Supplement: hydrolysed vs nonhydrolysed intent formula vs breast feeding	TRIGR (23)	Cow's milk hydrolyzate/
Net yet recouling	Tentinament for Prevention of Type 1 Districts in Reinflows "Al-Rose" Conditions: Automotionly Desires: Non-diabetic Relatives at Pier for Type 1 Districts (Agh Risk). Intervention: Drug. Repairment		phase III
Campbled	Prevention of Contract of Type I Diabetes in High Blak Phat Degree Notatives Contribute Diabetes, Type I Intervention: Drug Astropid Hyll	BABY DIET (24)	Gluten-free dtet/phase II
Alanne, wed beginning	SASYURET Study Primary Prevention of Type 1 Dispetes in Relatives of Incressed Genetic flink Condition: Type 1 Dispetes Intervention: Other Guter/rea diet during the first year of the	TrialNet NIP (27)	DHA/phase II plioi
Recruiting	Intranseal Insulin 10f Prevention of Type 1 Distrates Condition: Type 1 Distrates Intervention: Orug daily intranseal administration of Insulin	Vilamin D (31,82)	Vitamin D3/ phase I pilot
Complaind	insulin-free Core Milk Formula in Prevention of Type 1 Debetes Associated Autoimmunity - FINDIA Plint Study Condition: Bets-cell Autoimmunity - Intervention: Distary Supplement Cow's milk formula.	TrialNet Oral Insulin (33)	Human insulin/
Recruiting	Pecalibility Study of 2000 IU Per Day of Vitamin D for the Primary Prevention of Type 1 Diabetes Condition Type 1 Diabetes Intervention; Drug vitamin D3 (cholecaciferal) 2000-IU per day	16-10-513 (19-11)	phase III
Completed	The Diabetes Prevention Trial of Type 1 (Diabetes (DPT-1) Condition: Diabetes Methus, Type 1 (Intervention: Drug: Crystalized human recombinant) require	INIT II (34)	Human insulin/
Recruiting	Natural History Study of the Development of Type 1 Diabetes Condition: Diabetes Melitus, Type 1 Intervention:	Pre-POINT (26)	Human insulin/
Active, not recruiting	Nutritional Intervention to Prevent Diabetes Condition: Type 1 Diabetes Melitus Interventions: Drug: 1, DHA Treatment Group: Experimental; Drug: 2, Control Group		phase I/II
Completed	Severe Hypoglycemia in Pregnant Women With Type 1 Diabetes Conditions: Pregnancy; Diabetes Intervention:		
None no non-ing	Numitional Provention Pilot Trial for Type I Diabetes Constitut: Type I Diabetes Welfus Interventions: Diabetes Welfus Interventions: Diabetes Welfus Interventions: Diabetes Ariginy Incretyzett formula: Diabety Supplement: A regular com-		
Terronomic	PREVENTION Frament Plans by Early Inter-Vention at hightline in Type 1 Disaction for Kirtyay Disease) Continue: Type 1 Districts Interventions: Drug Removii: Drug Placeto	FINDIA	Insulin-free whey-based
Thecountring	Prevention of Self-care Department in Early Adoptionate With Disbettes Condition Type 1 Disbettes Interventions Behavioral, TeamWork CS Sessions; Behavioral: Diabetes Education		formula/ phase I/II
(Incoming	Condition Previous Tourness Condition Predictions Unterview Day County &		p
Energing by Invance	Regardenasco Bicos Flow in Type 1 Dieteres (PARITID) Company: Corology After Deceto: Type 1 Dieteres Memos Interventions: Procedure: Regardenoson myocardial perfusion maging; Procedure: Cardiac MRI co measurement		
Recruiting	Statins in Children With Type 1 Disbetes and Hypercholesterolemia Conditions: Type 1 DM; Hypercholesterolemia Interventions: Drug: Atorvastatin; Drug: Atorvastatin Placebo		
Recruiting	Trial of Intranssal Insulin in Children and Young Adults at Risk of Type 1 Diabetes Condition: Type 1 Diabetes Intervention: Biological: Intranssal insulin		

Insulin and prevention of diabetes in NOD mice

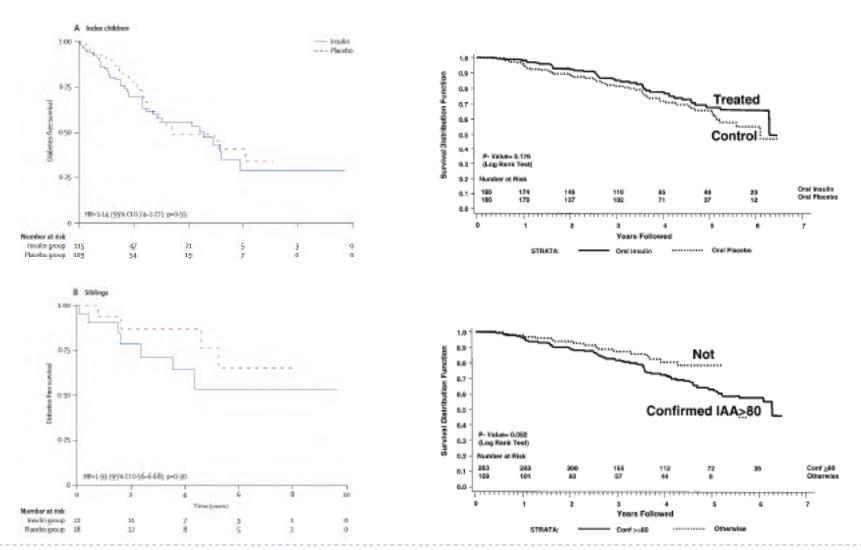
DPT-1 study

- screening of 89 827 relatives
- inclusion:
 - ► ICA + (3152, 3.7%)
 - ▶ IVGTT: low FPIR
- first inclusion: 31/12/94, end of accrual: 31/10/2000
- randomized: 339 (3-45 years, median 12 years)
- median follow up: 1345 days, loss of follow up: 1.3%/year
- Protocol:
 - i.v. insulin for 4 days once a year + s.c. insulin
 - or observation


European Pediatric Prediabetes -Subcutaneous Insulin Trial : EPP-SCIT

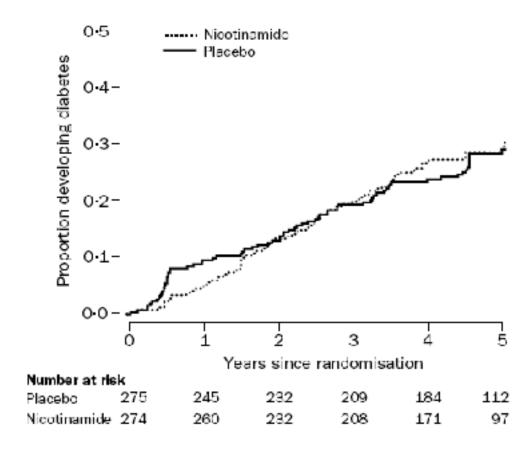
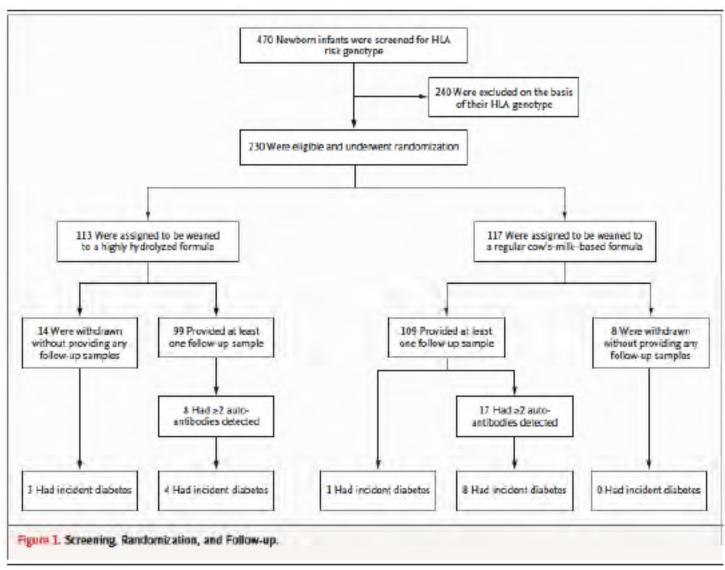

- Aim: evaluate the effects of small doses of insulin on ß-cell destruction
- Method: double blind controlled trial
- Inclusion criteria:
 - age : 3 17 years
 - first degree relatives of type 1 diabetic patients
 - ► HLA DQB1 ≠ 0602
 - positive antibodies:
 - ► ICA ≥ 40 JDFU or
 - ICA ≥ 10 JDFU and presence of insulin antibodies or low insulin secretion
 - normal glucose tolerance

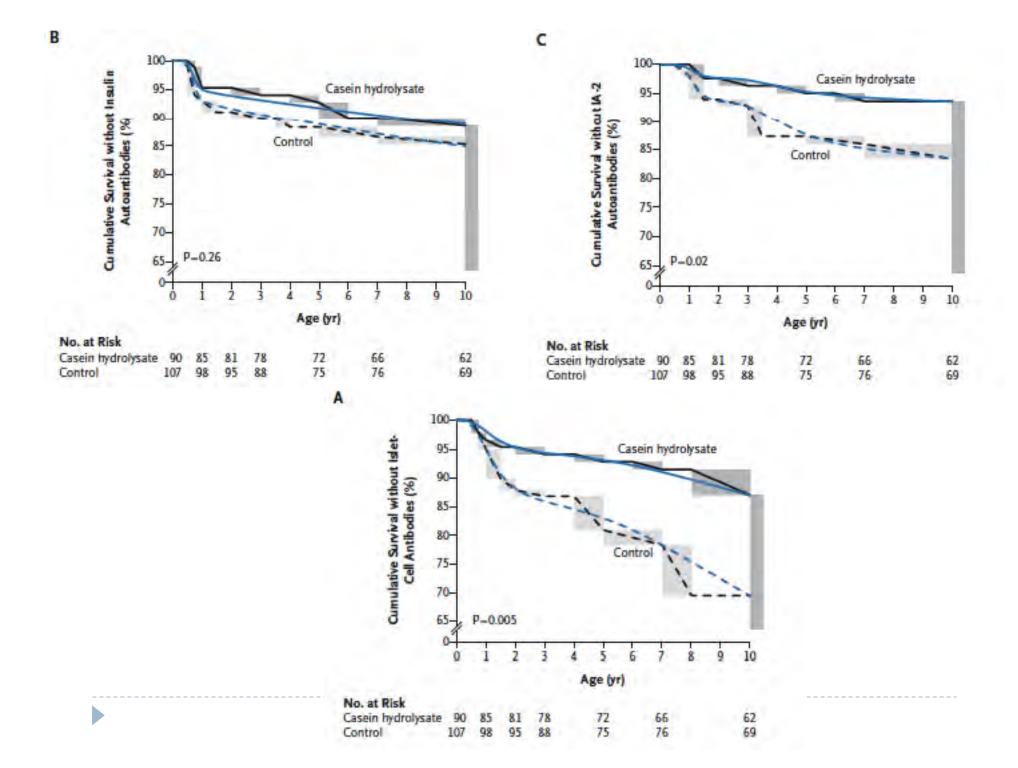
Sub-Q Insulin therapy to prevent type 1 diabetes


Diabetes Prevention Trial - 1 90 000 siblings screened 339 included

Nasal and oral insulin

Nicotinamide in individuals at risk for type 1 diabetes


Figure 2: Kaplan-Meier failure curve

Dietary Intervention in Infancy

and Later

Mikeel Knig. M.D. Jarma I Guti ya Kari Taramo Johanna Paronen, I and Hans K. Ak

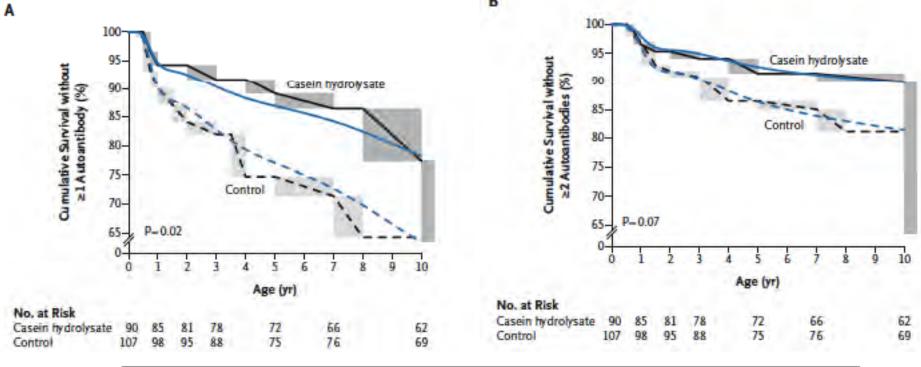


Table 1. Hazard Ratios with Highly Hydrolyzed Infant Formula, as Compared with Conventional Cow's-Milk-Based Formula, for Seroconversion to Positivity for Autoantibodies Predictive of Type 1 Diabetes.*

Autoantibodies	No, Who Underwent Seroconversion	Hazard Ratio with Highly Hydrolyzed Formula (95% CI)	P Value	Adjusted Hazard Ratio with Highly Hydrolyzed Formula (95% CI)ÿ	P Value
slet-cell antibodies	37	0.38 (0.18-0.77)	0.006	0.37 (0.17-0.75)	0.005
Insulin autoantibodies	23	0.72 (0.30-1.64)	0.45	0.61 (0.25-1.42)	0.26
GAD autoantibodies	23	0.87 (0.37-1.97)	0.74	0.80 (0.34-1.85)	0.61
A-2 autoantibodies	20	0.36 (0.12-0.94)	0.04	0.32 (0.10-0.83)	0.02
ZnT8 autoantibodies	14	0.61 (0.19-1.77)	0.37	0.61 (0.19-1.79)	0.37
≥1 Antibody	50	0.54 (0.29-0.95)	0.03	0.51 (0.28-0.91)	0.02
≥2 Antibodies	25	0.52 (0.21-1.17)	0.12	0.47 (0.19-1.07)	0.07

Conclusions

- Screening for diabetes associated antibodies in patient's relatives efficiently identifies at risk individuals
- All preventive approaches based on insulin have been inefficient to alter the course of disease
- Other preventive approaches evaluated so far have been similarly disappointing (nicotinamide)
- Dietary intervention is currently being evaluated
- Controlled trial are the only way to evaluate therapeutic approaches
- Given the complexity of such trials, solid data in recent onset diabetes are necessary to embark in diabetes prevention

